If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-8m-44=0
a = 1; b = -8; c = -44;
Δ = b2-4ac
Δ = -82-4·1·(-44)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{15}}{2*1}=\frac{8-4\sqrt{15}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{15}}{2*1}=\frac{8+4\sqrt{15}}{2} $
| 5(x+3)-3(x+5)=10 | | 13/10s+15/10=6 | | 2a+10/5=22-2a/3 | | -4x=-0.5(10x+18) | | (t+1)²=t²+5 | | 4(3x−5)=22 | | m^2-8m+36=0 | | f=5+1/2 | | 2—3x—12=41 | | 6x^2+27x-459=0 | | 3x(2x+4)+1=2x(3x+8) | | 28-3(x+6)=-2(3x-5)+4 | | x+12=x² | | 3x+10-2•x=4•x+1 | | 2(4x+3)=3(2x+2) | | 3(2x-5)=4-7x/2 | | 24z+42=186 | | 10y+77=180 | | 2/5x+4=1/5+8 | | 5(x-6=2x | | 4+2e=16e= | | 45+5*x=75 | | 2m+20=m | | 31+5b=56b | | 45+5•x=75 | | 15=11+2tt= | | X(92-x)=47,6 | | 1(x+11)+11=13 | | 3e+5=47e= | | 3(x+12)+19=73 | | 7-(2x-4)-5(x+2)=3-2(3x+1) | | 6(x+16)+13=55 |